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Abstract:  In Bayesian analysis, posterior distribution summarises what we know about uncertain quantities. It is a 

combination of the prior distribution and the likelihood function. Inference proceeds from the posterior distribution 

where all required posterior quantities were generated analytically. Informative prior distributions related to a 

natural conjugate prior specification are studied under a limited choice of a single scalar hyper parameter called g-

prior which corresponds to the degree of prior uncertainty on regression coefficients. This research identified a set 

of nine candidate default priors (called Zellner’s g-priors) prominent in literature and applicable in Bayesian model 

averaging (BMA). The methods adopted are theoretical and literature based and can be applied to derive the prior 

and posterior distributions of the regression parameters of multiple regression models.  Results obtained include 

the respective prior distributions and posterior distributions based on the set of g-prior structures prominent in 

Bayesian Model Averaging (BMA). 
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Introduction 

Research on Bayesian methodology and applications has 

progressed remarkably in the past few decades and issues of 

the choice of prior distribution and ultimately the 

determination of the posterior distribution have been quite 

delicate in data analysis. Procedures for assessing informative 

prior and posterior distributions for the parameters in 

Bayesian regression models have been put forward by Zellner 

(1983, 1986); Agliari & Parisetti (1988); Raftery et al. (1997); 

Fernandez et al. (2001a) and Eicher et al. (2011). 

Prior and posterior distributions play very crucial roles in 

Bayesian probability Theory as it is attractive to have 

conditional distributions that have a closed form under 

sampling; (Okafor, 1999 and Rossi et al., 2005). Zellner 

(1983, 1986) proposed a procedure for evaluating a conjugate 

prior distribution referred to as Zellner’s informative g-prior, 

or simply g-prior. The g-prior has been vastly used in 

Bayesian analysis in multiple regression models, due to the 

verity that analytical results are more readily available, better 

computational efficiency and its simple interpretation 

(Davison, 2008; Zhang et al., 2008; Rafetry et al., 2010 and 

Ogundeji et al., 2018). In linear regression model analysis in 

which g-prior is used, it has been noted that the choice of a 

scalar hyperparameter g is crucial for the behaviour of 

Bayesian model averaging (BMA) procedures. The use of 

Bayesian model averaging provides a natural solution to 

model uncertainty that leads to better predictions than simply 

selecting and using one model (Clyde & George, 2004). The 

Zellner’s g-prior structure has proven universally popular in 

Bayesian model averaging, since it leads to simple closed 

form expressions of posterior quantities and because it 

reduces prior elicitation to the choice of a single 

hyperparameter g. The approach to prior specification in 

multiple regression models presented here draws inspiration 

from the work of Feldkircher et al. (2012), Fouskakis & 

Ntzowfras (2013), Hanson et al. (2014) and Li & Clyde 

(2015).  

The aim of this study is to derive both prior distributions and 

posterior distributions of the regression parameters in 

Bayesian model averaging using the respective identified g-

prior from literature and obtain posterior quantities for 

inferences. This research identified a set of nine candidate 

default priors (Zellner’s informative g-prior that is based on a 

sample of n observations and k regression coefficients of 

independent variables) advocated in literature (Eicher et al., 

2011), as shown in Table 1.  

 

Bayesian Model Averaging and Zellner’s g-Prior 

Bayesian model averaging 

Bayesian Model Averaging (BMA) is a technique designed to 

help account for the uncertainty inherent in the model 

selection process, BMA focuses on which regressors to 

include in the analysis. By averaging across a large set of 

models one can determine those variables which are relevant 

to the data generating process for a given set of priors used in 

the analysis (Hoeting et al., 1999). Given a linear regression 

model with constant term 0  and k potential explanatory 

variables x1, x2,  …, xk of the form:  𝑦 = 𝛽0 + 𝛽1𝑥1 +
𝛽2𝑥2 +  … + 𝛽𝑘𝑥𝑘 + 𝜀   (1) 

 

This gives rise to 2k possible sampling models (indexed Mj, j 

= 1, 2, . . ., 2k), depending on whether we include or exclude 

each of the regressors. Once the model space has been 

determined, the posterior distribution of any coefficient of 

interest (say h ), given the data D is:  

𝑃(𝛽ℎ|𝐷) = ∑ 𝑃(𝛽ℎ|𝑀𝑗) 𝑃(𝑀𝑗|𝐷)2𝑘

𝑗=1    (2) 

BMA uses each model's posterior probability,  DMP j |

as weights. Each model (a set of variables) receives a weight 

and the final estimates are constructed as a weighted average 

of the parameter estimates from each of the models. BMA 

includes all of the variables within the analysis, but shrinks 

the impact of certain variables towards zero through the model 

weights. These weights are the key feature for estimation via 

BMA and will depend upon a number of key features of the 

averaging exercise including the choice of prior specified 

(Montgomery & Nyhan, 2010). 

The posterior model probability of Mj is given by Raftery et 

al. (2010): 

𝑃(𝑀𝑗|𝐷) = 𝑃(𝐷|𝑀𝑗)
𝑃(𝑀𝑗)

𝑃(𝐷)
= 𝑃(𝐷|𝑀𝑗)

𝑃(𝑀𝑗)

∑ 𝑃(𝐷|𝑀𝑖)𝑃(𝑀𝑖)2𝑘
𝑖=1

        (3) 

 

where 𝑃(𝐷|𝑀𝑗) = ∫ 𝑃(𝐷|𝛽𝑗 , 𝑀𝑗)𝑃(𝛽𝑗|𝑀𝑗)𝑑𝛽𝑗        (4) 

and 
j is the vector of parameters from model Mj, 

𝑃(𝛽𝑗  | 𝑀𝑗) is a prior probability distribution assigned to the 
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parameters of model Mj and  jMP  is the prior probability 

that Mj is the true model. 

The estimated posterior means and standard deviations of �̂� =

(�̂�0, �̂�1, … , �̂�𝑘) for model Mj are then constructed as (García-

donato et al., 2013): 

   

𝐸[�̂� | 𝐷] = ∑ �̂�𝑃(𝑀𝑗|𝐷)2𝑘

𝑗=1   (5) 

 

𝑉[�̂� | 𝐷] =  ∑ (𝑉𝑎𝑟[𝛽 | 𝐷, 𝑀𝑗] + �̂�2)𝑃(𝑀𝑗|𝐷) − 𝐸[𝛽 | 𝐷]22𝑘

𝑗=1      (6) 

 

Zellner’s g-Priors 

 Zellner’s g-priors applied in BMA analysis fixes a constant g 

> 0 and specifies the Gaussian prior for the regression 

coefficients β, conditional on σ2. Thus, Zellner’s g reduces the 

elicitation of the covariance structure by simply choosing the 

scalar g (Agliari & Parisetti, 1988); 

Assumed model: 𝑌  =    𝑋𝛽 +    𝜀   (7) 

with  𝜀  ~  𝑁(0, 𝜎2𝐼𝑛), nI  is an identity matrix of order 

n. 

The likelihood: 

𝑃(𝑌 | 𝑋, 𝛽, 𝜎2) = (2𝜋)
−𝑛

2 (𝜎2)
−𝑛

2  𝑒𝑥𝑝 (−
1

2𝜎2
(𝑌 − 𝑋𝛽)′(𝑌 −

𝑋𝛽)).    (8) 

The Prior: 𝛽 | 𝜎2   ~   𝑁(𝛽0, g𝛺).   (9) 

The Posterior: 
 𝛽 | 𝜎2 , 𝑋    ~     𝑁(𝛽0, 𝜎2 g(XTX)−1) (10) 

𝛽 | 𝑌, 𝜎2 , 𝑋    ~     𝑁 (
1

g+1
(𝛽0 + g�̂�),

𝜎2g

g+1
(XTX)−1) (11) 

𝐸[𝛽 | 𝑌, 𝜎2] = (
1

g𝜎2
𝑋𝑇𝑋 +

1

𝜎2
𝑋𝑇𝑋) (

1

g𝜎2
𝑋𝑇𝑋𝛽0 +

1

𝜎2
𝑋𝑇𝑌)     (12) 

𝐸[𝛽 | 𝑌, 𝜎2] =
1

1+g
𝛽0 +

g

1+g
(𝑋𝑇𝑋)−1𝑋𝑇𝑌  (13) 

  =
1

1+g
𝛽0 +

g

1+g
�̂� (14) 

 

Thus, the parameter g allows for direct weighting of the prior, 

β0, and data, ̂ . This prior is known as Zellner’s informative 

g-prior, or often referred to simply as the, g-prior. The hyper 

parameter g embodies how certain a researcher is that the 

coefficients are indeed zero. The value of g corresponds to the 

degree of prior uncertainty, (Hanson et al., 2014). The g-prior 

is not only intuitive to use in the model and prior definition, 

but also leads to familiar posterior results, (Zhang et al., 

2008). 

 

 

 

 

 

 

 

Table 1: Summary of identified g-prior structures examined 

S/N 
Structure 

of g-prior 
Comments/Sources 

1              𝐠 = 𝒏 

Unit Information Prior (UIP) based on number  

of observations Kass & Wasserman (1996). 

 

 

2 
𝐠 = 

𝒎𝒂𝒙(𝒏,   𝒌𝟐) 

 Corresponds to the benchmark prior suggested 

 by Fernandez et al., (2001b). 

 

 

3 𝐠 = 𝒌𝟐 

 Conforms to the risk inflation criterion by 

 Foster & George (1994). 

 

4 
𝐠 =

𝟏

𝒏
 

 

It is in the spirit of the” unit information  

priors" of Kass & Wasserman (1996). 

5 𝐠 =
𝒌

𝒏
 

 

Here, we assign more information to   the 

prior as we have more  regressors in the 

model 
 

S/N 
Structure 

of g-prior 
Comments/Sources 

 

 

6 

 

𝐠 = √
𝟏

𝒏
 

 This is an intermediate case, where we choose 

 a smaller asymptotic penalty term for large  

models than in the Schwarz criterion. 

 

 

7 

 

𝐠 = √
𝒌

𝒏
 

The prior information increases with the 

 Number of regressors in the model. 

 (Fernandez et al., 2001a) 

 

 

8 
𝐠 =

𝟏

𝒌𝟐
 

 This prior is suggested by the risk inflation 

 criterion (RIC). Foster & George (1994). 

9 𝐠 =
𝒏

√𝒌
 

 

Conforms with the spirit of “Unit Information  

Prior and increased number of regressors 

 (Ogundeji et al., 2018a, 2018b) 
 

 

Methodology 

The methods and framework used by Zellner (1986) to obtain both the prior distributions and posterior distributions for Multiple 

Regression Models are adopted.  

Given a regression model: 

𝑌  =    𝑋𝛽 +    𝜀         (15) 

with 𝜀  ~  𝑁(0, 𝜎2𝐼𝑛),
.
      

The likelihood function for the model is given by 

𝑙(𝛽, 𝜎 | 𝑌, 𝑋)    𝛼     𝜎−𝑛 𝑒𝑥𝑝 (−
1

2𝜎2
(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)).    (16) 

                        𝛼     𝜎−𝑛 𝑒𝑥𝑝 {− [𝑣𝑠2 + (𝛽 − �̂�)
′
𝑋′𝑋(𝛽 − �̂�)] /2𝜎2}.   (17) 

where �̂� = (𝑋′𝑋)−1𝑋′𝑌, 𝑣𝑠2 = (𝑌 − 𝑋�̂�)′(𝑌 − 𝑋�̂�) and v = n-k. 

Given anticipated values of β and σ2 denoted by βa and 
2

a respectively from a conceptual or imaginary sample:  

𝑌0   =    𝑋𝛽 +    𝜀0          (18) 

The joint informative g-prior distribution is:  

𝑃(𝛽, 𝜎2 | 𝜂0)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝 {−
𝑣�̅�𝑎

2

2𝜎2}  x    𝜎−𝑘  𝑒𝑥𝑝{−g(𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)/2𝜎2}  (19) 

where    𝜂0
′ = (𝛽𝑎

′ ,  �̅�𝑎, g, 𝑣).  
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The marginal prior distributions for β and σ are respectively: 

 
𝑃(𝛽 | 𝛽𝑎 , g, 𝑣)  𝛼  {𝑣�̅�𝑎

2 +  g(𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)}−(𝑣+𝑘)/2

    (20)
 

and  𝑃(𝜎 | �̅�𝑎 , 𝑉)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝{−𝑣�̅�𝑎
2/2𝜎2} 

     (21)
 

The posterior distributions for β and σ given a g-prior: 

 𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝑃(𝛽, 𝜎) 𝑙(𝛽, 𝜎 | 𝑌)       (22) 

𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝{−[(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + g(𝛽 − �̅�)′𝑋′𝑋(𝛽 − �̅�)]/2𝜎2}  (23) 

D denotes the data and   is the prior mean vector for regression coefficient vector  . 

Let 𝑤′ = (𝑌′: g
1

2 β′̅ X′)    and   𝑍′ = (𝑋′:  g
1

2  X′) 

Then the terms in square brackets in the exponential can be expressed as: 

(𝑤 − 𝑍𝛽)′(𝑤 − 𝑍𝛽) = (𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)  (24) 

where  �̿� = (𝑍′𝑍)−1𝑍′𝑤. 
Thus (23) can be expressed as:  

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)] /2𝜎2}  (25) 

where �̿� = (𝑍′𝑍)−1𝑍′𝑤 = (�̂� + g�̅�)/(1 + g). 

This is the mean of the posterior distribution with �̂� = (𝑋′𝑋)−1𝑋′𝑌. 

The covariance matrix of the conditional normal posterior distribution for β given σ, denoted by 𝑉(𝛽 | 𝜎, 𝐷), is 

 𝑉(𝛽 | 𝜎, 𝐷) = (𝑍′𝑍)−1𝜎2      (26) 

     = (𝑋′𝑋)−1𝜎2/(1 + g)     (27) 

𝑃(𝛽 | 𝐷)  𝛼  {(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)}

−(𝑛+𝑘)/2
  (28) 

with covariance matrix 𝑉(𝛽 | 𝐷) = (𝑍′𝑍)−1𝜎2 = (𝑋′𝑋)−1𝜎2/(1 + g)      (29) 

where (𝑛 − 2)𝜎2 ≡ (𝑤 − 𝑍�̿�)′(𝑤 − 𝑍�̿�) = (𝑌 − 𝑋�̿�)′(𝑌 − 𝑋�̿�) + g(β̿ − β)
′
X′X(β̿ − β).  (30) 

Also, the marginal posterior distribution for σ obtained from (25) by integrating with respect to β, is  

𝑃(𝜎 | 𝐷)  𝛼  𝜎−(𝑛+1)𝑒𝑥𝑝 {−(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�)/2𝜎2}.    (31) 

 
Results and Discussion 

Based on the methods in section three and relying on the results of Zellner (1986) on prior and posterior distributions for 

multiple regression models, the respective prior and posterior distributions for β and σ are obtained using each of the g-prior 

structures identified (Table 1).  

 

The Prior and Posterior distributions for β and σ using the proposed g-prior: g = 𝐧 . 

The joint informative g-prior distribution using 𝐠 = 𝐧  is:  

𝑃(𝛽, 𝜎2 | 𝜂0)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝 {−
𝑣�̅�𝑎

2

2𝜎2}  x    𝜎−𝑘  𝑒𝑥𝑝{−n(𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)/2𝜎2}   (32) 

where 𝜂0
′ = (𝛽𝑎

′ ,  �̅�𝑎 , n, 𝑣). 

The marginal prior distributions for β and σ are respectively: 

𝑃(𝛽 | 𝛽𝑎 , n, 𝑣)  𝛼  {𝑣�̅�𝑎
2 +  n(𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)}−(𝑣+𝑘)/2    (33) 

and  𝑃(𝜎 | �̅�𝑎 , 𝑉)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝{−𝑣�̅�𝑎
2/2𝜎2}.      (34) 

Similarly, the Posterior distribution for β and σ: 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝑃(𝛽, 𝜎) 𝑙(𝛽, 𝜎 | 𝑌)       (35) 

𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝{−[(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + 𝑛(𝛽 − �̅�)′𝑋′𝑋(𝛽 − �̅�)]/2𝜎2}.  (36)

  

D denotes the data and   is the prior mean vector for regression coefficient vector  . 

Let 𝑤′ = (𝑌′: √n β′̅ X′)    and   𝑍′ = (𝑋′: √n  X′). 

Then the terms in square brackets in the exponential can be expressed as: 

(𝑤 − 𝑍𝛽)′(𝑤 − 𝑍𝛽) = (𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�) (37) 

where  �̿� = (𝑍′𝑍)−1𝑍′𝑤. Thus (36) becomes:  

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)] /2𝜎2} (38) 

where �̿� = (𝑍′𝑍)−1𝑍′𝑤 = (�̂� + n�̅�)/(1 + n) 

is the mean of the posterior distribution with �̂� = (𝑋′𝑋)−1𝑋′𝑌. 

The marginal posterior distribution for β obtained from (38) by integrating with respect to σ, is  

http://www.ftstjournal.com/


Derivation of Prior and Posterior Distributions of Regression Parameters 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 821 – 826  

 
824 

 𝑃(𝛽 | 𝐷)  𝛼  {(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)}

−(𝑛+𝑘)/2
  (39) 

with covariance matrix:  𝑉(𝛽 | 𝐷) = (𝑍′𝑍)−1𝜎2 = (𝑋′𝑋)−1𝜎2 (1 + n)⁄      (40) 

 

The Prior and Posterior distributions for β and σ using the proposed g-prior: 𝐠 = 𝐤𝟐 . 
The joint informative g-prior distribution using 𝐠 =  𝐤𝟐

 

is:  

𝑃(𝛽, 𝜎2 | 𝜂0)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝 {−
𝑣�̅�𝑎

2

2𝜎2}  x    𝜎−𝑘  𝑒𝑥𝑝{−k2(𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)/2𝜎2}   (41) 

where 𝜂0
′ = (𝛽𝑎

′ ,  �̅�𝑎, k2, 𝑣). 

The marginal prior distributions for β and σ are respectively: 

 𝑃(𝛽 | 𝛽𝑎 , k2, 𝑣)  𝛼  {𝑣�̅�𝑎
2 + k2(𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)}−(𝑣+𝑘)/2   (42) 

and  𝑃(𝜎 | �̅�𝑎 , 𝑉)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝{−𝑣�̅�𝑎
2/2𝜎2}.     (43) 

The Posterior distribution for β and σ: 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝑃(𝛽, 𝜎) 𝑙(𝛽, 𝜎 | 𝑌)      (44) 

𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝{−[(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + (𝑘)2(𝛽 − �̅�)′𝑋′𝑋(𝛽 − �̅�)]/2𝜎2} (45) 

D denotes the data and   is the prior mean vector for regression coefficient vector  . 

Let 𝑤′ = (𝑌′: k β′̅ X′)    and   𝑍′ = (𝑋′: k  X′). 

Then the terms in square brackets in the exponential can be expressed as 

(𝑤 − 𝑍𝛽)′(𝑤 − 𝑍𝛽) = (𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�) (46) 

where  �̿� = (𝑍′𝑍)−1𝑍′𝑤. Thus (45) becomes: 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)] /2𝜎2} (47) 

where �̿� = (𝑍′𝑍)−1𝑍′𝑤 = (�̂� + k2�̅�)/(1 + k2). 

This is the mean of the posterior distribution with �̂� = (𝑋′𝑋)−1𝑋′𝑌. 

The marginal posterior distribution for β obtained from (47) by integrating with respect to σ, is:  

 𝑃(𝛽 | 𝐷)  𝛼  {(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)}

−(𝑛+𝑘)/2
  (48) 

with covariance matrix:  𝑉(𝛽 | 𝐷) = (𝑍′𝑍)−1𝜎2 = (𝑋′𝑋)−1𝜎2 (1 + k2)⁄      (49) 

 

The Prior and Posterior distributions for β and σ using the proposed g-prior: 𝐠 =
𝟏

𝐧
 . 

The joint informative g-prior distribution using 𝐠 =
𝟏

𝐧
  is:  

𝑃(𝛽, 𝜎2 | 𝜂0)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝 {−
𝑣�̅�𝑎

2

2𝜎2}  x    𝜎−𝑘  𝑒𝑥𝑝 {− (
1

n
) (𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)/2𝜎2}    (50) 

where 𝜂0
′ = (𝛽𝑎

′ ,  �̅�𝑎, (
1

n
) , 𝑣). 

The marginal prior distributions for β and σ are respectively: 

𝑃 (𝛽 | 𝛽𝑎 , (
1

n
) , 𝑣)   𝛼  {𝑣�̅�𝑎

2 + (
1

n
) (𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)}

−(𝑣+𝑘)/2
    (51) 

and  𝑃(𝜎 | �̅�𝑎 , 𝑉)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝{−𝑣�̅�𝑎
2/2𝜎2}.      (52) 

The Posterior distribution for β and σ: 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝑃(𝛽, 𝜎) 𝑙(𝛽, 𝜎 | 𝑌)       (53) 

𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + (
1

𝑛
) (𝛽 − �̅�)′𝑋′𝑋(𝛽 − �̅�)] /2𝜎2}.  (54)

 

D denotes the data and   is the prior mean vector for regression coefficient vector  . 

Let 𝑤′ = (𝑌′: (
1

n
)

1

2
 β′̅ X′)    and   𝑍′ = (𝑋′:  (

1

n
)

1

2
  X′). 

Then the terms in square brackets in the exponential can be expressed as 

(𝑤 − 𝑍𝛽)′(𝑤 − 𝑍𝛽) = (𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)  (55) 

where  �̿� = (𝑍′𝑍)−1𝑍′𝑤.
  

Thus (54) becomes:  
 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)] /2𝜎2}  (56) 

where �̿� = (𝑍′𝑍)−1𝑍′𝑤 = (�̂� + (
1

n
) �̅�) / (1 + (

1

n
)). 

This is the mean of the posterior distribution with  �̂� = (𝑋′𝑋)−1𝑋′𝑌. 

The marginal posterior distribution for β obtained from (56) by integrating with respect to σ, is: 

  𝑃(𝛽 | 𝐷)  𝛼  {(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)}

−(𝑛+𝑘)/2
   (57) 
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with covariance matrix:  𝑉(𝛽 | 𝐷) = (𝑍′𝑍)−1𝜎2 = (𝑋′𝑋)−1𝜎2 (1 + (
1

n
))⁄    (58) 

 

The Prior and Posterior distributions for β and σ using the proposed g-prior: 𝐠 =
𝐤

𝐧
 . 

The joint informative g-prior distribution using 𝐠 =
𝐤

𝐧
  is:  

𝑃(𝛽, 𝜎2 | 𝜂0)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝 {−
𝑣�̅�𝑎

2

2𝜎2}  x    𝜎−𝑘  𝑒𝑥𝑝 {− (
k

n
) (𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)/2𝜎2}    (59) 

where 𝜂0
′ = (𝛽𝑎

′ ,  �̅�𝑎 , (
k

n
) , 𝑣). 

The marginal prior distributions for β and σ are respectively: 

𝑃 (𝛽 | 𝛽𝑎 , (
k

n
) , 𝑣)   𝛼  {𝑣�̅�𝑎

2 + (
𝑘

n
) (𝛽 − 𝛽𝑎)′𝑋′𝑋(𝛽 − 𝛽𝑎)}

−(𝑣+𝑘)/2
    (60) 

and  𝑃(𝜎 | �̅�𝑎 , 𝑉)  𝛼  𝜎−(𝑣+1)𝑒𝑥𝑝{−𝑣�̅�𝑎
2/2𝜎2}.      (61) 

The Posterior distribution for β and σ: 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝑃(𝛽, 𝜎) 𝑙(𝛽, 𝜎 | 𝑌)       (62) 

𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + (
𝑘

𝑛
) (𝛽 − �̅�)′𝑋′𝑋(𝛽 − �̅�)] /2𝜎2}.  (63)

 

D denotes the data and   is the prior mean vector for regression coefficient vector  . 

Let 𝑤′ = (𝑌′: (
k

n
)

1

2
 β′̅ X′)    and   𝑍′ = (𝑋′:  (

k

n
)

1

2
  X′). 

Then the terms in square brackets in the exponential can be expressed as; 

(𝑤 − 𝑍𝛽)′(𝑤 − 𝑍𝛽) = (𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)  (64) 

where  �̿� = (𝑍′𝑍)−1𝑍′𝑤.
  

Thus (63) becomes:  
 

𝑃(𝛽, 𝜎 | 𝐷)  𝛼  𝜎−(𝑛+𝑘+1)𝑒𝑥𝑝 {− [(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)] /2𝜎2}  (65) 

where �̿� = (𝑍′𝑍)−1𝑍′𝑤 = (�̂� + (
k

n
) �̅�) / (1 + (

k

n
)). 

This is the mean of the posterior distribution with  �̂� = (𝑋′𝑋)−1𝑋′𝑌. 

The marginal posterior distribution for β obtained from (65) by integrating with respect to σ, is: 

  𝑃(𝛽 | 𝐷)  𝛼  {(𝑤 − 𝑍�̿�)
′
(𝑤 − 𝑍�̿�) + (𝛽 − �̿�)

′
𝑍′𝑍(𝛽 − �̿�)}

−(𝑛+𝑘)/2
   (66) 

with covariance matrix:  𝑉(𝛽 | 𝐷) = (𝑍′𝑍)−1𝜎2 = (𝑋′𝑋)−1𝜎2 (1 + (
k

n
))⁄      (67) 

 

 

Conclusion 

In Bayesian Model Averaging, the sensitivity of g-priors to 

predictive performance of regression models have been 

demonstrated (Ogundeji et al., 2018). Ultimately, the 

predictive performance of regression models is sensititve to 

the resulting posterior distribution based on a specified g-

prior. However, the estimation of g-priors is less 

straigthforward than the estimation of regressiom parameters. 

The study investigated nine g-priors identified in literature 

and based on the framework and methods in sections two and 

three. The results of prior distributions and posterior 

distributions of the regression parameters were derived for the 

g-prior structures numbered 1, 2, 3, 4 and 5 in Table 1. 

Similarly, the results of prior distributions and posterior 

distributions of the regression parameters derived for the g-

prior structures numbered 6, 7, 8 and 9 are also available. 

Further work to be done will include the derivation of the 

sampling properties in term of the expected mean and 

variance of the posterior distributions for the respective g-

prior structures investigated. 
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